Global Identification of the Full-Length Transcripts and Alternative Splicing Related to Phenolic Acid Biosynthetic Genes in Salvia miltiorrhiza

نویسندگان

  • Zhichao Xu
  • Hongmei Luo
  • Aijia Ji
  • Xin Zhang
  • Jingyuan Song
  • Shilin Chen
چکیده

Salvianolic acids are among the main bioactive components in Salvia miltiorrhiza, and their biosynthesis has attracted widespread interest. However, previous studies on the biosynthesis of phenolic acids using next-generation sequencing platforms are limited with regard to the assembly of full-length transcripts. Based on hybrid-seq (next-generation and single molecular real-time sequencing) of the S. miltiorrhiza root transcriptome, we experimentally identified 15 full-length transcripts and four alternative splicing events of enzyme-coding genes involved in the biosynthesis of rosmarinic acid. Moreover, we herein demonstrate that lithospermic acid B accumulates in the phloem and xylem of roots, in agreement with the expression patterns of the identified key genes related to rosmarinic acid biosynthesis. According to co-expression patterns, we predicted that six candidate cytochrome P450s and five candidate laccases participate in the salvianolic acid pathway. Our results provide a valuable resource for further investigation into the synthetic biology of phenolic acids in S. miltiorrhiza.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative RNA-Sequence Transcriptome Analysis of Phenolic Acid Metabolism in Salvia miltiorrhiza, a Traditional Chinese Medicine Model Plant

Salvia miltiorrhiza Bunge is an important traditional Chinese medicine (TCM). In this study, two S. miltiorrhiza genotypes (BH18 and ZH23) with different phenolic acid concentrations were used for de novo RNA sequencing (RNA-seq). A total of 170,787 transcripts and 56,216 unigenes were obtained. There were 670 differentially expressed genes (DEGs) identified between BH18 and ZH23, 250 of which ...

متن کامل

Cloning and Characterization of a Putative R2R3 MYB Transcriptional Repressor of the Rosmarinic Acid Biosynthetic Pathway from Salvia miltiorrhiza

Salvia miltiorrhiza Bunge is one of the most renowned traditional medicinal plants in China. Phenolic acids that are derived from the rosmarinic acid pathway, such as rosmarinic acid and salvianolic acid B, are important bioactive components in S. miltiorrhiza. Accumulations of these compounds have been reported to be induced by various elicitors, while little is known about transcription facto...

متن کامل

Correction: Computational Identification and Systematic Classification of Novel Cytochrome P450 Genes in Salvia miltiorrhiza

Salvia miltiorrhiza is one of the most economically important medicinal plants. Cytochrome P450 (CYP450) genes have been implicated in the biosynthesis of its active components. However, only a dozen full-length CYP450 genes have been described, and there is no systematic classification of CYP450 genes in S. miltiorrhiza. We obtained 77,549 unigenes from three tissue types of S. miltiorrhiza us...

متن کامل

Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots.

Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were inv...

متن کامل

The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza.

Secondary metabolites from plants play key roles in human medicine and chemical industries. Due to limited accumulation of secondary metabolites in plants and their important roles, characterization of key enzymes involved in biosynthetic pathway will enable metabolic engineering or synthetic biology to improve or produce the compounds in plants or microorganisms, which provides an alternative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016